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Trusted Autonomy for Space Flight Systems 

Michael Freed - NASA Ames Research Center 

NASA has long supported research on intelligent control technologies that could allow 
space systems to operate autonomously or with reduced humafi supervision. Proposed 
uses range from automated control of entire space vehicles to mobile robots that assist or 
substitute for astronauts to vehicle systems such as life support that interact with other 
systems in complex ways and require constant vigilance. The potential for pervasive use 
of such technology to extend the kinds of missions that are possible in practice is well 
understood, as is its potential to radically improve the robustness, safety and productivity 
of diverse mission systems. 

Despite its acknowledged potential, intelligent control capabilities are rarely used in 
space flight systems. Perhaps the most famous example of intelligent control on a 
spacecraft is the Remote Agent system flown on the Deep Space One mission (1998 - 
2001). However, even in this case, the role of the intelligent control element, originally 
intended to have full control of the spacecraft for the duration of the mission, was 
reduced to having partial control for a two-week non-critical period. Even this level of 
mission acceptance was exceptional. In most cases, mission managers consider 
intelligent control systems an unacceptable source of risk and elect not to fly them. 
Overall, the technology is not trusted. 

From the standpoint of those who need to decide whether to incorporate this technology, 
lack of trust is easy to understand. Intelligent high-level control means allowing software 
io make decisions that are too complex for conventional software. The decision-making 
behavior of these systems is often hard to understand and inspect, and thus hard to 
evaluate. Moreover, such software is typically designed and implemented either as a 
research product or custom-built for a particular mission. In the former case, software 
quality is unlikely to be adequate for flight qualification and the functionality provided by 
the system is likely driven largely by the need to publish innovative work. In the latter 
case, the mission represents the first use of the system, a risky proposition even for 
relatively simple software. 

In general, trust requires confidence in the software artifact itself, the processes and 
organizations that determine how the software is maintained and improved, and the 
affordances the software offers to both developers and other mission personnel that allow 
its behavior io be uiiderstood, tested, ciitiqlied aiid comiinicated. Perhqs the siiigle 
most effective source of trust in complex software is a long history of use, preferably in 
diverse applications by numerous, distinct users. Long deployments provide time to 
shake out bugs, improve performance and refine the system. They provide opportunity to 
analyze performance and failure modes, study and try alternative designs and compile 
documentation of users' experiences, all providing concrete evidence of software 
reliability. Long deployments also lead to more and more people becoming familiar with 
the technology, thus providing a source of technical guidance and staffing for new 
deployments. The paper will overview work addressing the problem of trust in 
autonomy, focusing on factors peculiar to space systems. 
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In most cases, intelligent control technologies that could enable spaceflight systems to 
operate autonomously or  with reduced human supervision are  seen as unacceptable sources 
of risk and not flown. This paper examines the reasons for lack of trust in these technologies 
and overviews efforts to enhance the technology and define systems engineering practices 
needed to improve reliability and earn trust. 

I. Introduction 
NASA has long supported research on intelligent control technologies that could allow space systems to operate 

autonomously or with reduced human supervision. Proposed applications include increasing automation in complex 
critical systems (eg .  life support) that otherwise require vigilant monitoring, intelligent mobile robots that assist or 
substitute for astronauts and automated control of entire space vehicles. The potential for pervasive use of such 
technology to extend the kinds of missions that are possible in practice is well understood, as is its potential to 
reduce costs and improve the robustness, safety and productivity of diverse mission systems. 

Despite its acknowledged potential, intelligent control capabilities are rarely used in spaceflight systems. 
Perhaps the most famous example of intelligent control on a spacecraft is the Remote Agent system [Bernard e f  aZ., 
19981 flown on the Deep Space One (DS-1) mission (1998 - 2001). However, even in this case, the role of the 
iiitelligent contro: element, originally intended to have full control of the spacecraft for the durarion of the mission, 
was reduced to having partial control for a two-week non-critical period. Even this level of mission acceptance was 
exceptional. In most cases, mission mmagers consider intelligent control systems ar, unacceptable source of risk 
and elect not to fly them. Overall, the technology is not trusted. 

From the standpoint of those who need to decide whether to incorporate this techno!ogy, !ack oftrust is easy to 
understand. Intelligent high-level control means allowing software to make decisions that are too complex for 
conventional software. The decision-making behavior of these systems is often hard to understand and inspect, and 
thus hard to evaluate. Moreover, such software is typically designed and implemented either as a research product 
or custom-built for a particular mission. In the former case, software quality is unlikely to be adequate for flight 
qualification and the functionality provided by the system is likely driven largely by the need to publish innovative 
work. In the latter case, the mission represents the first use of the system, a risky proposition even for relatively 
simple software. 
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In general, trust requires confidexe in the sohvare artifzct itself, the processes am! organizations that deterxiie 
how the software is maintained and improved, and the affordances the software offers to both developers and other 
mission personnel that allow its behavior to be understood, tested, cri t iq~ed d ccmm~niczted. Perhws tee sk,?g!e 
most effective source of trust in complex software is a long history of use, preferably in diverse applications by 
numerous, distinct users. Long deployments provide time to shake cut bugs, improve performance and refine the 
system. They provide opportunity to analyze performance and failure modes, study and try alternative designs and 
compile documentation of users' experiences, all providing concrete evidence of software reliability. Long 
deployments also lead to more and more people becoming familiar with the technology, thus providing a source of 
technical guidance and staffing for new deployments. The paper will overview work addressing the problem of trust 
in autonomy, focusing on factors peculiar to space systems. 

r 

11. The Case for Advanced Automation in Spaceflight Systems 
Technology adoption in practice is the result of a more or less explicit costhenefit assessment across a set of 

potential adopters. An explicit assessment involves enumerating and weighing a set of pros and cons, whereas an 
implicit assessment works directly fiom gut feelings. While the rest of this paper addresses the cost side from a 
number of perspectives, including risks, this section focuses on the potential benefits that might be derived from 
adopting advanced automation in space flight systems. 

The potential benefits of automation follow from the possibility to replace a function performed by people with a 
fimction performed by machines, or to create entirely new capabilities to assist humans. While the benefits from the 
latter category (novel automation) is broad and open-ended, this discussion will focus on the more common case of 
automating existing functions or novel functions that would be performed by humans (possibly under remote 
operation) in a traditional contemplated design. 

In the case of spaceflight, it is helpful to distinguish the cases where we implement automation on a flight system 
itself (e.g. onboard) vs. at a remote operational support location (e.g. ground operations). We will first identify the 
generic benefits of automation (onboard or on ground), and then consider the specific benefits of automating 
functions onboard a flight system. 

A. Replacing humans with automation in general 
Rep!acing Exnans witlb intomation offers ptential benefits from several factors. Fiist, machiiies Sie better and 

faster calculators than people. They can make decisions faster, operate on fresher data, operate on more data, 
consider more scenarios, and perform more computationally intensive calculations with fewer calculation errors. 

Together, these can translate to faster and higher quality responses to threats and opportunities. This in turn can 
reduce risks, improve safety, and increase mission performance. In addition to direct increases in mission 
performance, the improved ability to respond to problems enables a system to be less conservative, which can 
sometimes result in further performance improvements and more effective resource utilization. 

Second, using machines makes us less dependent on humans. This can lead to reducing operation costs (staffing 
and supporting people) and training costs. Alternatively, it can free up humans for more work on the same or 
different activities. One person could now operate multiple platforms or missions (force multiplier), or a person can 
focus on scientific or strategic activities, instead of engineering operations (work shifting). In addition, automation 
doesn't switch jobs or get sick, bored or tired, thus yielding 24x7 operations and higher utilization. Lastly, fewer 
human interfaces can reduce vulnerability to safety and security hazards introduced by people. 

Third, machines permit increased scalability. Once developed, automation can be replicated and used in multiple 
systems. This gives lower amortized cost for new sysrems. Tiis also gives potentiai to deploy large numbers (fleets, 
constellations) of automated systems. Cheaper systems can be used for lower-value purposes (e.g., personal systems, 
disposab!e systems). n e y  can also serve as redundant units, giving increased reliability arid mission performance 
and new architectural options. 

B. Replacing humans with onboard automation 
In addition to the benefits of automation in general, automating functions onboard can yield specific benefits. 

These in turn depend on whether the humans who previously performed the hnctions were themselves onboard or 
remote (e.g. ground-based). 

If the humans who previously performed the functions being automated were at a separate location (e.g., ground- 
based), onboard automation can reduce or remove communications requirements for connecting the ground and 
onboard systems. This has a host of benefits. First, it can free up communications infrastructure (e.g. deep space 
networks, relay satellites, onboard antennas, transmitters and receivers) for other work, or eliminate the need for it 
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entirely. This in turn can reduce the design, launch, and maintenance costs, risks, and complexity associated with 
setup, maintenance, and management of the communication infrastructure. 

Second, it can remove communication delays, restrictions, and overhead. Removing delays permit still faster 
responses to threats and opportunities than those enabled by automation alone. Removing communication 
restrictions enables continued operation in situations when communication to a ground system is lost or otherwise 
unavailable, thus improving safety and performance in fault situations. In addition, this enables deliberate operation 
in situations when communication would not have been available. This removes constraints on sphere of operation, 
such as in remote or occluded environments. Removing the need to remote control a system in the presence of time 
delays also reduces the costs, risks, and complexity to maintain external situation awareness capability and to model 
the target system. Note that the benefits in this paragraph apply whether the autonomous onboard system is 
unpiloted or piloted: both situations benefit from autonomous operations. 

If humans previously performed the functions at the same location as the control system (e.g crew), this can 
additionally reduce requirements for onboard crew. This yields multiple benefits. Naturally, it can free up crew to 
perform scientific or exploration activities, instead of maintenance and operations, giving increased crew utilization 
and mission return. In some cases, fewer crew are needed. This has substantial benefits, including reduced costs 
from carrying people (human weight, size, life support, waste management, and resources). In some cases, crew are 
no longer needed at all. Potential benefits of complete automation include reduced risks to human life (increase 
safety, increase risk tolerance, lower costs by eliminating human safety requirements) and elimination of the 
requirement to return humans to original locations. This in turn permits longer duration and one-way missions and 
removes the need for human-support and return infrastructure. 

C. Discontinuities in benefits of automation 
This section has discussed potential benefits of automation. Note that the benefits of automation need not be 

continuous with respect to each automation step, but can be characterized by discrete improvements. When a 
function is partially automated or partially allocated to a target system, some benefits above accrue. When enough 
is automated and allocated to a target system that an interface is no longer necessary, the benefits can be sizeable, 
opening up entirely new architectural opportunities. Moreover, the improvements in practice may not be monotonic. 
The costs of partial automation or partial reallocation of functions may be higher than in the original configuration, 
until a discrete transition is reached.* 

111. Software Reliability in Infrequently Used, Hard to Test Systems 
The first source of concern in using advanced automation is that it is founded on complex software, a notorious 

source of space mission failure. Software, unlike hardware, does not wear out. It fails due to design errors not 
detected during testing. However, testing intelligent control software for spaceflight systems presents significant 
challenges. In comparable terrestrial systems such as the flight automation used on commercial aircraft, extensive 
flight testing is conducted prior to operational use; such testing is infeasible for space systems. Once fielded, 
additional design flaws in commercial flight automation inevitably emerge. However, this rarely results in 
catastrophe due to large safety margins, the presence of highly competent human pilots who can take over from the 
automation at a moment's notice and the low cost of aborting a flight if there are significant problems. Space 
environments are far less forgiving and space flights less far less frequent, so operational testing cannot play as 
central a role in engineering space systems. 

The technology underlying advanced automation poses additional software reliability challenges. For example, 
the adaptable r?aeure of some of t!!ese systems m e a s  t!!at a single test environment ~ a y  not accurately reflect the 
system's behavior in the deployed environment. As a result, the range of possible testing scenarios becomes 
extremely large, reducing the effectiveness of traditional testing [Havelund et al., 20001. In addition, autonomous 
systems typically require real-time processing with asynchronous communications between cooperating tasks. This 
raises particular concerns about race and deadlock conditions that are difficult to discover in traditional testing-based 
verification and validation (V&V). For example, a case study analyzing the DS-1 Remote Agent Executive [Lowry 
et ai., 19971 found five concurrency errors that had escaped detection despite extensive traditional testing. 

* This design discontinuity is related to the concept of "tunneling through the cost barrier" discussed by [Hawken et 
ai., 19991. 
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D. Verification and Validation 
Several large-scale case studies have been conducted to evaluate analytic verification methods applied to 

intelligent automation. The first of these studies applied a model checking method to a model of the resource 
management architecture from the Remote Agent Executive for DS-1. This resulted in the detection of several 
concurrency errors that had not been discovered during testing Powry  et al., 19971. An error of this sort actually 
occurred in flight during the DS-1 mission (in a different part of the software), causing the executive component of 
the controller to deadlock. A follow-on study indicated that increased tool automation would have reduced the cost 
of applying model checking and very likely enabled this error to have been detected prior to flight wavelund et al., 

More recently, a study funded by NASA’s Intelligent Systems Program examined the relative effectiveness of 
several V&V technologies on the executive control component used on the K9 rover [Brat et al., 20041. The study 
consisted of a controlled experiment in which static analysis [Brat and Klemm, 20031, runtime analysis [Havelund 
and Rosu, 20011 and model checking [Visser et al., 20031 were compared to traditional testing with respect to error 
detection. The results showed that these tools outperform traditional testing (each in its own way), especially when 
detecting concurrency errors. 

The results of the experiment inspired a novel framework for testing the K9 Executive [Artho e t  al., 20031. 
Runtime analysis, which monitors temporal relationships between software events during testing, was successful in 
detecting errors when given test cases that provide relatively good coverage of the test input space. Model checking, 
a process that uses exhaustive execution of software or system models to provide extensive test coverage, could 
systematically cover all input plans up to a specific size for the rover. These two approaches were combined in a 
V&V framework which uses model checking to create all plan structures (up to a specific size) as test inputs and 
runtime analysis to monitor temporal formulas that describe correct plan execution. This combination has been very 
effective in automating V&V for the K9 executive. 

While it is clear that analytic V&V tools will provide improvements in executive reliability, the design of the 
executive (its software architecture) can either enhance or impede the effectiveness of these tools. Studies on 
modular (or compositional) verification techniques, which break the verification tasks into smaller sub-tasks and 
then properly combine the results, show that software design models can provide early (and therefore more cost- 
effective) V&V of critical executive design properties [Giannakopoulou et al., 2002;]. In addition, the results of the 
design verification can be used to effectively decompose the code-level V&V into more tractable analysis problems 
[Giannakopoulou et ai., 2004; Cobleigh et ai., 20031. Based on these results, we have begun to assemble a set of 
software design patterns for executives which increase the verifiability of critical software properties [Mehlitz and 
Penix, 20031. An initial experiment showed that the use of an event queue to coordinate K9 executive tasks 
provided a more verifiable architecture and eliminated several concurrency errors. 

Although intelligent automation software presents some new challenges to the software V&V problem, its 
rigorously architected nature and reliance on domain model representations presents an opportunity for more 
thorough validation than has been possible using traditional ad-hoc control software designs [Feather et al., 20031. 
For example, to provide the flexibility and reliability required for reconfigurable autonomous systems, program 
synthesis (automated code generation) can be combined with V&V technology to reduce software defects. 
Integrating an autonomy architecture with real-world robotic systems and hardware involves specification of 
functional components and associated behavior models. Code generation techniques to synthesize components and 
models are needed to ease integration and enable on-site reconfiguration. Automatic formal V&V methods can 
leverage knowledge of the code generator and the autonomous control software framework to ensure the correctness 
and robustness of new components [Denney et al., 20041. 

20011. 

E. Engineering Domain Knowledge 
Intelligent automation software typically combines two complementary components. The first provides general- 

purpose reasoning and control capabilities not tied to a particular space vehicle, system or mission. This 
component, rhe “engine,“ may incorporate, e.g., search aigorirnms used for planning [Cnien et ai, %GOO; Jonsson et 
al., 20001, temporal constraint propagation algorithms used for scheduling [Tsamardinos et al., 19981 and model- 
based reasoning algorithms used for fault diagnosis and recovery [Williams and Nayak, 19961. The second 
component is “domain knowledge” specific to the missions and controlled systems for which the automation is 
designed. This may include, e.g., domain-specific heuristics used to guide search, mission activity models used by a 
planning and scheduling mechanism, and spacecraft subsystem hardware behavior models used for model-based 
diagnosis and recovery. Trust in the automation depends on the belief that this knowledge has been specified 
correctly: software is only as reliable as the models that inform it. This underscores the importance of engaging 
personnel with appropriate expertise (system engineer, subsystem engineers, scientists) during the design and 
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development of the intelligent automation software, and of performing thorough V&V on the models to assure their 
completeness and correctness. 

Part of the challenge is to bridge the gap in expertise between technologists who understand the intelligent 
control engine and specialists in the controlled system(s). The technologist’s role concentrates most naturally on 
the design and prototype development of the general-purpose engine. Final implementation and integration into the 
mission software may be assigned to the project software engineering team, in order to retain confidence that all 
mission software meets the project’s criteria for software quality and engineering practice. Domain experts have a 
more significant role to play in the design and implementation of the domain model software. System engineers, 
subsystem engineers and scientists are the authoritative sources for domain knowledge in their respective domains. 
The question remains, how is this knowledge imparted to the software? Whose responsibility is it to translate 
domain-specific models into application software for use by an intelligent automation engine? 

One option is to have the technologist (or software engineer) perform this translation. This option becomes 
necessary when the domain model must be represented using a complex, difficult formal notation in order to be 
usable by the engine component. In this case, the technologist is in the best position to understand and manipulate 
the formalisms to capture the appropriate domain-specific behavior. Unfortunately, the technologist’s likely 
unfamiliarity with the details of the domain area introduces risk of model inaccuracy. Moreover, this approach is 
really only effective once the system design has matured and the required automation behaviors are well-understood 
by the domain experts, This means delaying development of the domain model software development to later 
phases in the project lifecycle when design iterations are typically most costly and most difficult to carry out. An 
example of this type of implementation strategy was adopted for the DS-1 Remote Agent Experiment (RAX). The 
domain models used by the various components of the Remote Agent software (Planning and Scheduling, 
Execution, and Mode Identification and Reconfiguration) were developed by the corresponding autonomy software 
researchers working in concert with the DS-1 spacecraft system engineers [Bernard et al., 20001. Much iteration was 
required to correctly capture the system behavior, some of which was as a result of changes in the system engineers’ 
understanding of the system and its operational requirements. 

A second option is to have domain experts translate their domain-specific knowledge into domain models, 
allowing these experts to be directly responsible for its correctness. However, as noted above, this presents a 
significant challenge if domain modeling involves complex formalisms as systemhbsystem engineers and scientists 
are not generally trained in the use of such formalisms. Similarly, if domain knowledge is incorporated directly into 
running code, requiring experts to specifi the knowledge requires a great deai of oversight by mission software 
engineers to ensure that best software practices are applied, and that appropriate care is taken in the development of 
real-time embedded software. This type of implementation strategy is common in the area of guidance, navigation 
and control (GN&C), where estimation and control algorithms (e.g., Extended Kalman Filters and attitude 
controllers) are frequently developed by the GN&C analysts themselves, with some help and oversight from the 
flight software team. 

Recent and ongoing research in the field of “executable models” opens up a third strategy for the implementation 
of domain model software. Given that domain experts already frequently use expressive design representations to 
capture their domain knowledge (e.g., Statecharts [Harel, 19871 used to depict behavioral models of component 
hardware, UML models of software behavior), it makes sense to implement general-purpose automation engines that 
can directly parse, interpret and reason about these representations. One of the important findings from RAX was 
that it would be desirable to have domain experts encode the domain models directly. A concluding recommendation 
from the RAX Final Report was to “develop tools and simplify the modeling languages to enable spacecraft expers 
to encode models themselves,” to “employ tools and languages already familiar to the experts,” and to “organize the 
models around the domain (attitude control, power, etc.)” rather than around the RAX technology components. The 
model-based programming paradigm [Williams et ai., 20031, for example, has been developed as an attempt to 
leverage modeling representations that are already familiar to domain experts. 

This approach has many benefits: once an appropriate general-purpose engine has been developed and validated, 
it can be reused from mission-to-mission, leading to potentiaily significant cost savings in software development. 
Once the engine has been validated, the recurring software V&V problem is effectively reduced to the problem of 
model validation. Though still a significant challenge, this presents fewer difficulties than code validation in general 
as the relative readability and inspectability of domain models allows experts to confidently inspect, discuss and 
critique this knowledge. While this is a very promising area of ongoing work, a complete validation of the approach 
via full-scale demonstration in a mission context has yet to be done. 
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IV. Variable Autonomy - Minimizing the Need for Leaps of Faith 
Decisions about how much automation to incorporate are a fundamental part of system design. An enormous 

!iter&Jre exists tc! nynvide r- - gllidmce e11 s x h  deecisieils, de fze  tradeeffs 23d w m  sf pstectis! pit fa!!^. L? one 
particularly well known example [Sheridan 19921, design options are defined by 10 degrees of automation which 
range from “the computer offers no assistance: humans must do it all” to “the computer selects and executes the 
task, ignoring the human.” Other work has focused specifically on automation in spaceflight systems with the goal 
of developing a methodology for making these design decisions for given missions and systems [Proud, Hart and 
Mrozinski, 20031. 

Looking at level of automation as exclusively a design-time decision is not necessarily appropriate for 
spaceflight systems. Mission managers will typically choose to operate with minimal automation in certain 
conditions, especially in the early stages of a mission or system deployment when uncertainty about system 
performance is greatest. Trust in the automation (and in the system as a whole) should increase with time and 
experience, especially if the system supports fine control over the degree of autonomy exercised by the intelligent 
controller. For example, the traditional approach to spacecraft control is based on timed command sequences - e.g. 
a sequence far changing spacecraft attitude might include the command “at time :36::2h:05m:27.2~ turn on 
thrusterA” followed by “at time 13d:12h:05m:29.5~ turn off thrusterA.” A mission manager might find it acceptable 
to allow flight automation the flexibility to adjust the timing of actions in the sequence. Such a change has 
important advantages and significant operational consequences [Pell and Shafto, 20041. 

One can imagine a sequence of small steps leading to complete autonomy: from flexible timing to flexible 
ordering - i.e. allowing the automation to reorder actions if appropriate; from there to allowing the automation to 
decide between alternative methods (sets of actions) for achieving a goal. Next, mission personnel might allow the 
automation to decide which goals to pursue and which to abandon. Next, they could allow it to interruptlresume 
actions and insert behaviors to smooth the transitions. At each step, the intelligent controller is allowed more 
degrees of freedom in selecting and organizing its activities. And at each step, its behavior becomes less 
predictable, but more adaptive, more responsive and more suitable for complex responsibilities. Providing such fine 
control in the executive allows gradual increases in trust to translate into small increments in operational autonomy. 
The alternative is to require mission managers to make large leaps of faith, an approach that is at odds with the 
challenges and practice of developing spaceflight systems and one that has met with little past success. 

The term variable autonomy refers to the ability of intelligent control software to support changes in degree of 
automation. More specifically, the goal of a variable autonomy software architecture is to allow systems to operate 
with dynamically varying levels of independence, intelligence and control. A human user, another system, or the 
autonomous system itself may adjust the system’s “level of autonomy” as required by the current situation. A 
system’s variable autonomy can involve changes in: 

The complexity of the commands it executes and the constraints it enforces. 
The resources (including time) consumed by its operation. 
The circumstances under which the system will either override or allow manual control. 
The circumstances under which the system will request user information or control. 
The number of subsystems that are being controlled autonomously and how they are coupled. 
The allocation of responsibility to select, sequence, perform or terminate tasks among systems and users. 

Variable autonomy provides the flexibility to adapt to changing environments, user goals, and resources. This 
flexibility is importmt in order to successfdly deploy autonomous system solutions for highly complex ieai-world 
problems. For example, advanced life support systems for space habitats will need to operate autonomously in most 
conditions as vigilant monitoring of these systems would be a poor use of astronaut time (and also intolerably dull). 
But reduced autonomy would likely be required in off-nominal and maintenance conditions. Another context in 
which variable autonomy is likely to prove critical is in coordinating the behavior multiple systems (e.g. a group of 
mobile robots). A human operator might normally supervise the group at a high level, allowing each system or 
entity a great deal of autonomy, but take direct control of an individual to carry out a difficult task or handle an 
emergency. In each case, the control software may be completely in control or it may be supervising manual control 
or it may be somewhere in between. The key goal of variable autonomy is to minimize the necessity for human 
interaction, but maximize the capability to interact. 
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A. Variable Autonomy Issues 
Effective variable autonomy requires an autonomous control system that can perform routine operations 

autonomously yet give control to a human to perform specialized or difficuit operations. The a d v ~ ~ t a g e  of a 
variable autonomy system is that the unique (and expensive in space situations) capabilities of a human can be 
brought to bear when needed most and not during tedious, repetitive and routine operations. However, a challenge 
for variable autonomy is that the control software cannot always confirm what the state of the world or of the task is 
when the human fmishes his or her portion of t!!e job. This can make it difficult and dangerous for the system to 
resume autonomous operation. As an extreme example, the human may forget some crucial aspect of their portion 
of the task (such as turning a valve) that the system is expecting to be accomplished. Less drastic, but probably 
more commonplace would be subtle side effects of the human’s performance such as putting a tool in a slightly 
different orientation than is expected by the robot. In either case, the problem is that the system’s models of the 
world and of the task are not consistent with the real state of the world and of the task. 

Effective variable autonomy also requires that the autonomous control system know when a human should be 
performing a task and when it can safely perform a task. Ideally, the control system would plan both its own 
activities and those required of the human with whom it will be Fading contrcl. In this case, the control system 
would proceed autonomously until reaching the point where human intervention is required; the system would then 
inform the human and safely wait until the human is ready to accept control. The control system should also 
recognize situations when the prescribed control is not effective and stop to ask for human assistance even if human 
assistance was not originally required for the action. The control system would then need to account for the human 
intervention and replan its task. 

Just as there are issues in designing the control software to accommodate interaction with a human, there are also 
issues in supporting the human’s understanding of when and how to interact. Even when operating in a fully 
autonomous mode, the user should be able to quickly assess the state of the system being controlled as well as the 
control activities required to achieve the goal state. When problems occur, the user should be able to determine 
what went wrong, how the problems affect ongoing and planned activities, and whether manual action is required. 
When novel opportunities occur, the user should be able to deviate from the encoded control scheme temporarily. 
When performing joint human-computer tasks, even closer task coordination is required. The human and 
autonomous system must maintain a shared understanding of the state of the overall task, to ensure that each 
performs assigned activities in a correct and timely manner. These requirements to assist humans interacting with 
autonomous systems affect the design of the control software. New types of information must be made available to 
the user as well as new ways of influencing control activities. This influence can range from changing the 
parameters or instrumentation used for autonomous control to issuing control commands. These requirements must 
be met without impacting the ability of the control software to achieve real-time control performance. 

B. Variable Autonomy Principles 

systems. These principles include: 
Through experience we have begun to identify several principles for building effective variable autonomy 

Retrofitting manually controlled hardware for variable autonomy is costly and time-consuming. If variable 
autonomy is desired then hardware systems must be designed with this goal in mind. Ideally hardware and 
software control systems should be designed at the same time. 
Sensing is necessary for any sort of closed-loop control, but especially critical for variable autonomy 
systems where the control system is expected to make higher-level decisions. In particular, there must be 
sufficient and appropriate sensor coverage to capture the relevant state of the environment as well as that of 
the system. 
The previous two principles lead naturally to another: The designers should strive for the highest level of 
autonomy possible, and fall back on human capabilities where necessary. This will lead to a natural 
understanding of the limitations of the system, and highlight where and how improvements in technology 
could be used to improve the system. 
“Cognizant failure” and “conditional execution’’ are necessary capabilities at all levels. Cognizant failure 
refers to the control system’s ability to recognize when it is failing at a task and take appropriate action, 
such as trying another strategy or asking for help. Conditional execution is the requirement that the system 
verify that certain preconditions are met before proceeding with an action. 
An effective variable autonomy system needs a component capable of planning and resource management. 
This component must keep track of constraints and preconditions, despite possible changes in level of 
autonomy or the trading of control between the human and the control system. To the extent possible, 
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planning for human intervention at the appropriate times simplifies the coordination of human and 
autonomous activities. 
An intelligent user interface is required that can combine information from various levels of abstraction and 
interpret it for the user. Conversely, if the user decides to take control, the interface must provide the 
ability to control the system at various levels of abstraction. The interface should provide pertinent 
information at a fast enough rate such that the user can spot trouble in time, and should quickly alert the 
user when the control system needs help. 
Control autonomy may need to be adjusted at different levels of abstraction for different control situations. 
When changes in control initiative can be anticipated, the planning capability can designate the level of 
autonomy via allocation of tasks to either human agents or autonomous software agents. When changes in 
control initiative are in response to a control situation, the executive capability can provide alternative 
methods for a human or autonomous software agent. When changes in control initiative are in response to 
a novel or unexpected situation, the human may need to change the level of autonomy to manage the 
situation manually. 
When possible, the design of the automated software should include a means of determining the state of the 
environment that can be altered by manual tasks. One of the more effective approaches is to execute 
manual tasks through the automated control software, when manual tasks are amenable to computer-based 
control. We have used other strategies, including monitoring states during manual tasks and updating states 
after manual tasks complete. In cases where’the effects of manual tasks cannot be sensed directly, indirect 
means of determining state (e.g., inferred from other activities, requesting confirmation from the user) may 
be required. 
The user interface to assist joint task performance between a human and autonomous software agent should 
represent data about the state of the task shared by all participating agents. Information needed for such a 
view includes explicit representation of tasks, the agent responsible for a task, and the expected effects of 
the task. 
This common grounding makes it easier to hand over tasks among agents and assists in detecting when 
tasks do not have the desired effect (mismatch between expected and actual task effects). The interface 
should also provide a means for exchanging information and coordinating activities (such as notification of 
pending manual tasks). 

Variable autonomy is necessary for any application of autonomous control technology that needs to interact with 
humans. Humans who rely on the autonomous control system will want to be able to take control of it at various 
times and at various levels. They will also want insight into what the system is doing even when all is going well. 

V. The Test of Time - Developing Proven Technologies for Intelligent Control 
Mission managers are understandably averse to having complex software used for the first time on their mission 

in a mission-critical role. Intelligent control software is thus more likely to be trusted and used if it has proven itself 
in other applications, preferably including applications similar to a given proposed use and preferably over an 
extended period. Long deployments help build trust in the underlying automation framework for a variety of 
reasons. They provide time to shake out bugs, improve performance and refine the system. They further provide 
opportunity to analyze performance and failure modes, study and try alternative designs and compile documentation 
of users’ experiences, all giving concrete evidence of software ieliability. Long deployments also lead to inore 
people becoming familiar with the technology, thus providing a source of technical guidance and staffing for new 
deployments. In this section we present a case study of such a long-duration deployment, and discuss factors that 
have emerged as affecting the level of trust in the autonomy software. 

A. Case Study: Intelligent Control for Advanced Life Support 
A good example of extended use of intelligent control technologies is the use of 3T [Bonasso et al., 19971 to provide 
automation for an advanced water recovery system (AWRS) at NASA’s Johnson Space Center over a seven year 
period (from 1998 to the present. 3T consists of three “tiers” of software. These combine to form a powerful 
automation capability whose flexibility and complexity present trust-related challenges representative of those we 
expect for intelligent automation in general. 

The top tier of the 3T autonomous control architecture (see Figure 1) is a hierarchical task net planner that 
specifies tasks required to achieve control objectives and designates those tasks for execution. The middle tier, a 
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reactive executive, provides high-level control services that translate planner-generated tasks into low-level 
“primitive” actions at runtime. Services include decomposing tasks into subtasks based on stored procedures, 
sequencing actions based on priority and other factors, recognizing and responding to anomalies and ensuring that 
each action’s timing requirements are met. Actions selected by the executive are carried out by “skills,” software 
modules that transform primitives specified by the executive into continuous control and monitoring activities at the 
hardware level. The set of skills used in a given application constitute the third tier of the architecture. 

3T applications run autonomously due in large part to the principle of “cognizant failure” [Gat, 19981 embodied 
in each level of the architecture. The skills level notifies the executive when it loses any of the states it must 
achieve; the executive uses alternative procedures when the primary methods fail, ultimately putting the control 
system in a safe state. The planner can synthesize alternative plans in light of the failures of the lower two tiers. 

Prior to supporting the AWRS developments. the 3T team from JSC’s Automation and Robotics Division had 
applied the architecture several times in support of limited tests controlling a portion of the life support control 
system [Shreckenghost et ai., 1998; Lai-fook & Ambrose, 19971. While this familiarized some users with 3T, there 
were different user teams for each test and therefore no continuing corporate memory of the advantages of 
intelligent control software 

With the advent of advanced water recovery systems 
developed in 1998 in support of the space station, the 3T 

team. This provided an opportunity to develop a complete 
suite of control software from the ground up. In the summer 

autonomous control for a single subsystem -- a second- 
generation biological water processor -- during a 450-day 
2417 test. Then in January 2000 the advanced water research 
group received ALS funding for the year long AWRS test, 
involving four advanced water recovery subsystems: 1) a 
biological water processor (BWP) to remove organic 
compounds and ammonia; 2) a reverse osmosis (RO) 
subsystem to remove inorganic compounds from the effluent 
of the BWP; 3) an air evaporation system (AES) to recover 
additional water from the brine produced by the RO; and 3) 
a post processing system (PPS) to bring the processed water 
to within potable limits. The intelligent control system had to 
handle upwards of 200 sensors and actuators, run 2417 and be completely autonomous. The 3T team provided 
intelligent control technologies for the AWRS from buildup through the long running testing phase until April 2002. 
From then until the present they have continued providing 3T control for the follow-on PPS Optimization Tests. 

The use of the 3T system for control of the AWRS was a resounding success for applied AI. The resulting 
software ran unattended for 98.75% of the test period (6684 of 6768 hours), averaging on the order of only 6 hours 
downtime per month. In an environment where experimental hardware is being tested, this achievement is 
especially notable and is directly attributable to the hybrid deliberative-reactive nature of the control design. 
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Figure 2. The AWRS subsystems. At the left is biological water processor (BWP). Upper right is the rack 
containing the Reverse Osmosis (RO) subsystem in the rack bottom, the air  evaporation subsystem (AES) at 
the top of the rack, and the post processing system (PPS) in the rack's left rear. The bottom picture is a close 
up of the wick in the AES. 

A more subtle but longer lasting effect was also achieved: the life support engineers changed their modus operandi 
from one of vigilant monitoring of life support systems to intermittent remote supervision. At the beginning of the 
test, the using engineers required a human in attendance overnight to monitor the control system. After three 
months of operation, the life support group determined that the system could be run overnight unattended. This shift 
to depending on advanced software to manage life support is a clear result of the users learning to trust the 
intelligent control system. 

B. Factors Leading to Trusted Autonomy 
A number of developments occurred during this experience that helped engender trust in ALS engineers. 

I .  Adjustable Autonomy 
Although the 3T controls for WRS were able to run with full autonomy, during hardware build-up, functional 

testing, and for the first three months of operation, test engineers wanted to be able to command the system or its 
subsystems at all levels of operation. The 3T team provided the test team with interactive interfaces used for 3T 
code testing. These interfaces included commands for activating individual pumps, valves and relays, for executing 
agent-level procedures such as executing an RO purge, and to start or stop the autonomous operation of any 
subsystem, such as running the BWP in a stand-alone mode. 

Being able to suspend parts of the control system's autonomy was important as well. For example, mid-way 
through the test it became necessary for the BWP engineers to manually purge the individual tubes in the nitrifier 
portion of the BWP. This purging often resulted in a low-pressure condition that would trigger a low-pressure 
automatic shutdown (ASD) from the BWP skills. To prevent the ASD during staff purge operations, the 3T team 
modified the ASD procedure to check the state of a memory flag for staff purging. When the flag was present, the 
BWP agent would put out the ASD warning but would take no action. Interactive text was added to the WRS 
display that could be triggered to set the staff purge flag in memory and start a twenty-minute timer. At the end of 
the twenty minutes, the timer code would remove the flag and the ASD would function normally. 
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2. Eq@.mlt Eegrodatim 
By their very nature, life support systems are long running, carrying out their prescribed processing for weeks or 

months. Anoma!ies z e  r z e ,  but when they occur they m ~ s t  be detected 2nd processed to prevent often catastrophic 
results. This long duration characteristic has several trust implications. The twelve months of WRS operation saw 
the slow degradation of pressure transducers, flow meters, a dew point sensor, the AES blower and the main RO 
feed pump. Sometimes the failure brought the test to a halt; at other times, the degradation was gradual and difficult 
to detect, generating intermittent symptoms. Degradation sometimes occurred over a nuinber of  months. Neither 
the water team nor the controls engineers had the experience to determine if the various problems stemmed from 
software or hardware. There were few utilities in place to help the team capture intermittent events, so a great deal 
of time was spent adding trace code and studying the results. After about six months, the test team’s familiarity with 
each subsystem grew to the point where the causes of these anomalies were easily ascertained. For the PPS 
Optimization Tests, the 3T team has developed and is using a complex event recognition subsystem, which 
recognizes the structure of anomalies and tracks their substructures to the underlying logged data. With the controls 
team aiding the test team through these problems the test team was able to better understand the limits of the 
intelligent control system and to ask for specific modifications that would improve its contribution to the test. 

3. Safety Shutdowns 
No matter the number of precautions taken to prevent system failure, there will always be the possibility of 

variables outside the bounds of the intelligent control system. Chief among these were network problems and power 
failures. Every six weeks or so, over the course of a twelve-month test, the control system would experienced 
random faulty data packets coming from the wider JSC network. These would produce a data set that would cause 
the executive to stop communicating with the skills. This event inevitably occurred after the last nightly check by 
the control engineers, and before the laboratory personnel arrived in the water lab six hours later. With the 
executive down, its messages would build up in the communications server and after about an hour, the 
communications server would crash, bringing down all skills connected to it. 

When the skills died they left the last settings on the pumps and valves. In one instance, the failure caused a 
pump to drain a gas-liquid separator and to push air into the ion-exchange beds of the PPS, resulting in a need to 
repack the bed. In another instance, the gas-liquid separator was pumped dry by the RO and the RO drew air at high 
pressure into its membranes, rendering them useless. 

The solution to these network failures was to make the skills aware of the loss of communications with the 
executive and execute a safmg of their respective subsystem. To this end the 3T team developed watchdog timers in 
the skills layer. If the elapsed time since the last executive communication was greater than a predetermined time, 
say five minutes, the skills would put the subsystems in a protected state, e.g., the AES would turn off its heaters and 
the condensate pump; the BWP would reconfigure itself to stand alone and turn both the feed and effluent pumps 
off. The watchdog timers, instituted soon after the restart of the frs t  test point, protected the WRS from network 
failures through out the remainder of the test. The ease with which the skills could be modified contributed to 
building trust in the intelligent control technologies. 

4. Logging State Speeds Restarts 
Loss of power to the water facility occurred several times during the course of the test. In these instances, the 

valves would remain in their last commanded state but all pumps would go to an off state. The primary dilatory 
effect was the loss of the bacteria colonies in the BWP if the feed water was not restored to the BWP in a timely 
manner. The watchdog timers took care of a power loss to the executive computer, but for a full-power loss, the life 
support engineers eventually learned to resuscitate the bacteria if the time lapse was less than six hours. 

However, with the loss of power as well as the numerous times the WRS had to be halted due to hardware failure 
-- about twenty-five times during the course of the test -- it became important to be able to restart the system 
quickly, without having to manually determine the system state before the power loss or the hardware failure. Thus, 
the 3T team wrote a procedure to log the internal state of the agents every thirty seconds. When the staff restarted 
the system, the executive read the last logged state of all the subsystems and the current state via the skills then 
determined how to resume operations. This was especially easy for 3T because each primitive procedure checks the 
state of the hardware before commanding it, and the sequencer will skip steps in a procedure that have been obviated 
by outside or serendipitous events. Thus to restart the RO for example, the sequencer might determine from the 
logged state file that RO was last stopped twenty minutes into its secondary phase, command the RO skills to set the 
valve configurations for secondary if they were not left in that state, check to see that all the pumps are on for 
secondary operation, advance the phase timer to +20 and resume monitoring secondary phase processing. Again, 
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the ease with which the executive could be modified, and its resulting stable operation engendered continuing trust 
by the test team. 

5. Supporting Intermittent Monitoring 
As stated earlier, the life support engineers came to trust the 2417 autonomous operations of the AWRS via 3T. 

But even this happy state of affairs generated problems that had to be overcome in order to maintain trust of the 
intelligent control system. The main issue was that while the life support engineers continued to use data logs for 
scientific analysis, they rarely monitored the running hardware systems. So when an anomaly occurred, the staff 
took considerable time to come up to speed on the state of the AWRS before and after the anomaly. The 3T team 
thus made a number of additions to the 3T system to alert the staff to failures and to help them quickly gain an 
accurate view of the situation. 

Figure 3. The GUI client for the BWP, the right-hm’d picture showing optional data 

Fed by 3T’s distributed data management system, graphical user interfaces (GUIs) were made available on the 
user’s desktops (see Figure 3) to provide a quick overview, via the subsystem schematic, and from which additional 
details could be called up on demand. The more commonly desired data (tank levels, pump speeds) were displayed 
directly on the schematic, and additional information was available (units, human-readable device name, component 
values for a computed value) by clicking on the schematic component in question. The user could also display skill 
logic specifications -- a part of the configuration management of the control code -- allowing operators to refresh 
their understanding of how the controls worked. In addition, the lead controls engineer wrote detailed operations 
notes during hnctional testing which the remainder of the controls team used to assess the health of the software 
agents. These operations notes were also made available from the GUI schematics displays. 
It was also important for the WRS engineers to be able to review performance history to detect system anomalies or 
indicators that an anomaly was developing. The water team made extensive use of the data logs to support anomaly 
detection and performance analysis. The logs could be displayed in a table from the GUIs and variables could be 
plotted for viewing performance over time. 

Intermittent monitoring also requires that the intelligent system recognize when failures occur and notify the 
human expert in a timely fashion. Initially, the GUIs subscribed only to device level data from the agents in 3T. 
Consequently, the primary anomaly that could be detected was a loss of data connection between the skill manager 
and the GUIs, signaled by both audible and visual alarms. Later, the watchdog timers were added, which indicated 
the health of the communications between the skills and RAPS layers of 3T. The user could then use information 
pop-ups on the GUIs to see how long the agents and the sequencer had been out of contact with one another. This 
information would also go to an error log, with timestamps allowing the user to examine performance history just 
prior to the anomaly. 
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C .  Case Study Summary 
The described experience highlights the tenet that using intelligent control technologies over extended periods 

generates trust in operators and mission stakeholders. Trust didn’t come quickly. 3T had been used successfully in 
earlier life support tests spanning the four years prior to the AWRS testing, providing an initial comfort level for 
choosing 3T for the AWRS. It took three months of  operations before the life support engineers trusted the 
intelligent control system to operate unattended. Specific adjustments - not fundamental changes but changes 
critical to user compatibility - had to be made to the intelligent control system to foment and maintain operator trust 
throughout the long testing period. These included providing adjustable autonomy, additional safety measures, a 
quick restarthesume capability, and additional utilities to support the paradigm shift from vigilance to intermittent 
supervision. Most of these adjustments would not have been recognized, let alone implemented had the intelligent 
control system been used for a shorter period. 

VI. Conclusion 
This history of automation in most systems is marked by gradual adoption. Early on, the benefits are least, the risk 
highest and prior practice exerts the most influence. But ultimately, benefits in cost, safety and productivity make 
automation a normal and relatively uncontroversial system element. No commercial jet would be built today 
without advanced automation, nor would a telecommunications facility, modern naval vessel or automobile 
manufacturing plant. Such systems perform or support activities analogous to those we wish to carry out in space. 
However, adopting advanced automation into spaceflight systems presents particularly acute challenges. There is a 
constant tension between emphasis on the enormous difficulty of surviving and operaring in space at all and 
emphasis on realizing exploration goals with the most powerful, flexible tools we can construct. Mission failures 
lead to an understandable focus on avoiding risk. Notable, recent failures attributed to software intensify concern 
about software in particular, especially complex software of the sort needed for advanced automation. 

But the risks are balanced by an equally great need, ultimately, to realize the benefits advanced automation can 
provide. It is critical, therefore, to lay groundwork for reliable, trusted, intelligent control. Fortunately, a great deal 
of prior and ongoing work addresses this need. One element of this work is to obtain a better understanding of the 
specific barriers to adoption of intelligent control technology. A comprehensive effort to obtain this understanding 
and subsequently define needed systems engineering practices and standards, would involve technologists, mission 
managers, system and subsystem engineers, and mission stakeholders of all kinds. No such study has yet taken 
place, but the combined experience of many individuals involved in limited deployments of advanced automation on 
space systems indicates several important areas. In this paper, we have focused on 3 of these areas - minimizing the 
risk of software design errors through verification and validation, minimizing the need to adopt automation too 
rapidly through variable autonomy, and proving system qualities over time in long deployments. We have also 
documented a significant case study that holds many lessons for trusted spaceflight automation. Continued efforts in 
these and other areas should lead to the best of all worlds: highly capable, highly reliable spaceflight systems 
allowing us to safely and economically extend our presence in space. 
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